wyrm.processingΒΆ
Processing toolbox methods.
This module contains the processing methods.
Functions
append(dat, dat2[, axis, extra]) |
Append dat2 to dat. |
append_cnt(dat, dat2[, timeaxis, extra]) |
Append two continuous data objects. |
append_epo(dat, dat2[, classaxis, extra]) |
Append two epoched data objects. |
apply_csp(*args, **kwargs) |
Apply the CSP filter. |
apply_spatial_filter(dat, w[, prefix, ...]) |
Apply spatial filter to Data object. |
calculate_cca(dat_x, dat_y[, timeaxis]) |
Calculate the Canonical Correlation Analysis (CCA). |
calculate_classwise_average(dat[, classaxis]) |
Calculate the classwise average. |
calculate_csp(epo[, classes]) |
Calculate the Common Spatial Pattern (CSP) for two classes. |
calculate_signed_r_square(dat[, classaxis]) |
Calculate the signed r**2 values. |
calculate_spoc(epo) |
Compute source power co-modulation analysis (SPoC) |
calculate_whitening_matrix(dat) |
Calculate whitening matrix from continuous data. |
clear_markers(dat[, timeaxis]) |
Remove markers that are outside of the dat time interval. |
correct_for_baseline(dat, ival[, timeaxis]) |
Subtract the baseline. |
create_feature_vectors(dat[, classaxis]) |
Create feature vectors from epoched data. |
filtfilt(dat, b, a[, timeaxis]) |
A forward-backward filter. |
jumping_means(dat, ivals[, timeaxis]) |
Calculate the jumping means. |
lda_apply(fv, clf) |
Apply feature vector to LDA classifier. |
lda_train(fv[, shrink]) |
Train the LDA classifier. |
lfilter(dat, b, a[, zi, timeaxis]) |
Filter data using the filter defined by the filter coefficients. |
lfilter_zi(b, a[, n]) |
Compute an initial state zi for the lfilter() function. |
logarithm(dat) |
Computes the element wise natural logarithm of dat.data. |
rectify_channels(dat) |
Calculate the absolute values in dat.data. |
remove_channels(*args, **kwargs) |
Remove channels from data. |
remove_classes(*args, **kwargs) |
Remove classes from an epoched Data object. |
remove_epochs(*args, **kwargs) |
Remove epochs from an epoched Data object. |
rereference(dat, chan[, chanaxis]) |
Rereference all channels against a single channel |
segment_dat(dat, marker_def, ival[, ...]) |
Convert a continuous data object to an epoched one. |
select_channels(dat, regexp_list[, invert, ...]) |
Select channels from data. |
select_classes(dat, indices[, invert, classaxis]) |
Select classes from an epoched data object. |
select_epochs(dat, indices[, invert, classaxis]) |
Select epochs from an epoched data object. |
select_ival(dat, ival[, timeaxis]) |
Select interval from data. |
sort_channels(dat[, chanaxis]) |
Sort channels. |
spectrogram(cnt) |
Calculate the spectrogram of a continuous data object. |
spectrum(dat[, timeaxis]) |
Calculate the spectrum of a data object. |
square(dat) |
Computes the element wise square of dat.data. |
stft(x, width) |
Short time fourier transform of a real sequence. |
subsample(dat, freq[, timeaxis]) |
Subsample the data to freq Hz. |
swapaxes(dat, ax1, ax2) |
Swap axes of a Data object. |
variance(dat[, timeaxis]) |
Compute the variance along the timeaxis of dat. |
Classes